34,542 research outputs found

    A simpel and versatile cold-atom simulator of non-Abelian gauge potentials

    Full text link
    We show how a single, harmonically trapped atom in a tailored magnetic field can be used for simulating the effects of a broad class of non-abelian gauge potentials. We demonstrate how to implement Rashba or Linear-Dresselhaus couplings, or observe {\em Zitterbewegung} of a Dirac particle.Comment: 5 page

    Creation of Entanglement by Interaction with a Common Heat Bath

    Full text link
    I show that entanglement between two qubits can be generated if the two qubits interact with a common heat bath in thermal equilibrium, but do not interact directly with each other. In most situations the entanglement is created for a very short time after the interaction with the heat bath is switched on, but depending on system, coupling, and heat bath, the entanglement may persist for arbitrarily long times. This mechanism sheds new light on the creation of entanglement. A particular example of two quantum dots in a closed cavity is discussed, where the heat bath is given by the blackbody radiation.Comment: 4 revtex pages, 1 eps figure; replaced with published version; short discussion on entanglement distillation adde

    Lubricated friction between incommensurate substrates

    Full text link
    This paper is part of a study of the frictional dynamics of a confined solid lubricant film - modelled as a one-dimensional chain of interacting particles confined between two ideally incommensurate substrates, one of which is driven relative to the other through an attached spring moving at constant velocity. This model system is characterized by three inherent length scales; depending on the precise choice of incommensurability among them it displays a strikingly different tribological behavior. Contrary to two length-scale systems such as the standard Frenkel-Kontorova (FK) model, for large chain stiffness one finds that here the most favorable (lowest friction) sliding regime is achieved by chain-substrate incommensurabilities belonging to the class of non-quadratic irrational numbers (e.g., the spiral mean). The well-known golden mean (quadratic) incommensurability which slides best in the standard FK model shows instead higher kinetic-friction values. The underlying reason lies in the pinning properties of the lattice of solitons formed by the chain with the substrate having the closest periodicity, with the other slider.Comment: 14 pagine latex - elsart, including 4 figures, submitted to Tribology Internationa

    Hadron-nucleus scattering in the local reggeon model with pomeron loops for realistic nuclei

    Full text link
    Contribution of simplest loops for hadron-nucleus scattering cross-sections is studied in the Local Reggeon Field Theory with a supercritical pomeron. It is shown that inside the nucleus the supercritical pomeron transforms into a subcritical one, so that perturbative treatment becomes possible. The pomeron intercept becomes complex, which leads to oscillations in the cross-sections.Comment: 13 pages, 6 figure

    Three Generations on the Quintic Quotient

    Get PDF
    A three-generation SU(5) GUT, that is 3x(10+5bar) and a single 5-5bar pair, is constructed by compactification of the E_8 heterotic string. The base manifold is the Z_5 x Z_5-quotient of the quintic, and the vector bundle is the quotient of a positive monad. The group action on the monad and its bundle-valued cohomology is discussed in detail, including topological restrictions on the existence of equivariant structures. This model and a single Z_5 quotient are the complete list of three generation quotients of positive monads on the quintic.Comment: 19 pages, LaTeX. v2: section on anomaly cancellation adde

    The Exact MSSM Spectrum from String Theory

    Get PDF
    We show the existence of realistic vacua in string theory whose observable sector has exactly the matter content of the MSSM. This is achieved by compactifying the E_8 x E_8 heterotic superstring on a smooth Calabi-Yau threefold with an SU(4) gauge instanton and a Z_3 x Z_3 Wilson line. Specifically, the observable sector is N=1 supersymmetric with gauge group SU(3)_C x SU(2)_L x U(1)_Y x U(1)_{B-L}, three families of quarks and leptons, each family with a right-handed neutrino, and one Higgs-Higgs conjugate pair. Importantly, there are no extra vector-like pairs and no exotic matter in the zero mode spectrum. There are, in addition, 6 geometric moduli and 13 gauge instanton moduli in the observable sector. The holomorphic SU(4) vector bundle of the observable sector is slope-stable.Comment: 15 pages, LaTeX; v2: Hidden sector is unstable, symbol typesetting error corrected, clarifications and references added; v3: New discussion of hidden secto

    Zero-temperature equation of state of mass-imbalanced resonant Fermi gases

    Get PDF
    We calculate the zero-temperature equation of state of mass-imbalanced resonant Fermi gases in an ab initio fashion, by implementing the recent proposal of imaginary-valued mass difference to bypass the sign problem in lattice Monte Carlo calculations. The fully non-perturbative results thus obtained are analytically continued to real mass imbalance to yield the physical equation of state, providing predictions for upcoming experiments with mass-imbalanced atomic Fermi gases. In addition, we present an exact relation for the rate of change of the equation of state at small mass imbalances, showing that it is fully determined by the energy of the mass-balanced system.Comment: 5 pages, 2 figures, 2 table

    Inhomogeneous phases in one-dimensional mass- and spin-imbalanced Fermi gases

    Get PDF
    We compute the phase diagram of strongly interacting fermions in one dimension at finite temperature, with mass and spin imbalance. By including the possibility of the existence of a spatially inhomogeneous ground state, we find regions where spatially varying superfluid phases are favored over homogeneous phases. We obtain estimates for critical values of the temperature, mass and spin imbalance, above which these phases disappear. Finally, we show that an intriguing relation exists between the general structure of the phase diagram and the binding energies of the underlying two-body bound-state problem.Comment: 5 pages, 3 figure

    Phase structure of mass- and spin-imbalanced unitary Fermi gases

    Get PDF
    We study the phase diagram of mass- and spin-imbalanced unitary Fermi gases, in search for the emergence of spatially inhomogeneous phases. To account for fluctuation effects beyond the mean-field approximation, we employ renormalization group techniques. We thus obtain estimates for critical values of the temperature, mass and spin imbalance, above which the system is in the normal phase. In the unpolarized, equal-mass limit, our result for the critical temperature is in accordance with state-of-the-art Monte Carlo calculations. In addition, we estimate the location of regions in the phase diagram where inhomogeneous phases are likely to exist. We show that an intriguing relation exists between the general structure of the many-body phase diagram and the binding energies of the underlying two-body bound-state problem, which further supports our findings. Our results suggest that inhomogeneous condensates form for mass ratios of the spin-down and spin-up fermions greater than three. The extent of the inhomogeneous phase in parameter space increases with increasing mass imbalance.Comment: 17 pages, 7 figure
    corecore